Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Microb Biotechnol ; 16(4): 838-846, 2023 04.
Article in English | MEDLINE | ID: covidwho-2237147

ABSTRACT

Currently, malaria is still one of the major public health problems commonly caused by the four Plasmodium species. The similar symptoms of malaria and the COVID-19 epidemic of fever or fatigue lead to frequent misdiagnosis. The disadvantages of existing detection methods, such as time-consuming, costly, complicated operation, need for experienced technicians, and indistinguishable typing, lead to difficulties in meeting the clinical requirements of rapid, easy, and accurate typing of common Plasmodium species. In this study, we developed and optimized a universal two-dimensional labelled probe-mediated melting curve analysis (UP-MCA) assay based on multiplex and asymmetric PCR for rapid and accurate typing of five Plasmodium species, including novel human Plasmodium, Plasmodium knowlesi (Pk), in a single closed tube following genome extraction. The assay showed a limit of detection (LOD) of 10 copies per reaction and could accurately distinguish Plasmodium species from intra-plasmodium and other pathogens. Additionally, we proposed and validated different methods of fluorescence quenching and tag design for probes that are suitable for UP-MCA assays. Moreover, the clinical performance of the Plasmodium UP-MCA assay using a base-quenched universal probe was evaluated using 226 samples and showed a sensitivity of 100% (164/164) and specificity of 100% (62/62) at a 99% confidence interval, with the microscopy method as the gold standard. In summary, the UP-MCA assay showed excellent sensitivity, specificity, and accuracy for genotyping Plasmodium species spp. Additionally, it facilitates convenient and rapid Plasmodium detection in routine clinical practice and has great potential for clinical translation.


Subject(s)
COVID-19 , Malaria , Plasmodium , Humans , Multiplex Polymerase Chain Reaction/methods , Sensitivity and Specificity , DNA, Protozoan/analysis , DNA, Protozoan/genetics , Plasmodium/genetics , Malaria/diagnosis , Malaria/epidemiology , COVID-19 Testing
3.
Transbound Emerg Dis ; 69(5): e3393-e3399, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053038

ABSTRACT

Flaviviruses such as West Nile (WNV), Usutu (USUV) and Bagaza (BAGV) virus and avian malaria parasites are vector borne pathogens that circulate naturally between avian and mosquito hosts. WNV and USUV and potentially also BAGV constitute zoonoses. Temporal and spatial cocirculation and coinfection with Plasmodium spp., and West Nile virus has been documented in birds and mosquito vectors, and fatally USUV-infected passerines coinfected with Plasmodium spp. had more severe lesions. Also, WNV, USUV and BAGV have been found to cocirculate. Yet little is known about the interaction of BAGV and malaria parasites during consecutive or coinfections of avian hosts. Here we report mortality of free-living red-legged partridges in a hunting estate in Southern Spain that were coinfected with BAGV and Plasmodium spp. The outbreak occurred in the area where BAGV first emerged in Europe in 2010 and where cocirculation of BAGV, USUV and WNV was confirmed in 2011 and 2013. Partridges were found dead in early October 2019. Birds had mottled locally pale pectoral muscles, enlarged, congestive greenish-black tinged livers and enlarged kidneys. Microscopically congestion and predominantly mononuclear inflammatory infiltrates were evident and Plasmodium phanerozoites were present in the liver, spleen, kidneys, muscle and skin. Molecular testing and sequencing detected Plasmodium spp. and BAGV in different tissues of the partridges, and immunohistochemistry confirmed the presence and colocalization of both pathogens in the liver and spleen. Due to the importance of the red-legged partridge in the ecosystem of the Iberian Peninsula and as driver of regional economy such mortalities are of concern. Such outbreaks may reflect climate change related shifts in host, vector and pathogen ecology and interactions that could emerge similarly for other pathogens.


Subject(s)
Bird Diseases , Coinfection , Flavivirus Infections , Flavivirus , Galliformes , Plasmodium , West Nile Fever , West Nile virus , Animals , Coinfection/epidemiology , Coinfection/veterinary , Ecosystem , Flavivirus/physiology , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Quail , Spain/epidemiology , West Nile Fever/epidemiology , West Nile Fever/veterinary
4.
Front Cell Infect Microbiol ; 11: 797509, 2021.
Article in English | MEDLINE | ID: covidwho-1924076

ABSTRACT

Malaria, a disease caused by the protozoan parasites Plasmodium spp., is still causing serious problems in endemic regions in the world. Although the WHO recommends artemisinin combination therapies for the treatment of malaria patients, the emergence of artemisinin-resistant parasites has become a serious issue and underscores the need for the development of new antimalarial drugs. On the other hand, new and re-emergences of infectious diseases, such as the influenza pandemic, Ebola virus disease, and COVID-19, are urging the world to develop effective chemotherapeutic agents against the causative viruses, which are not achieved to the desired level yet. In this review article, we describe existing drugs which are active against both Plasmodium spp. and microorganisms including viruses, bacteria, and fungi. We also focus on the current knowledge about the mechanism of actions of these drugs. Our major aims of this article are to describe examples of drugs that kill both Plasmodium parasites and other microbes and to provide valuable information to help find new ideas for developing novel drugs, rather than merely augmenting already existing drug repurposing efforts.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Plasmodium , Drug Development , Humans , Plasmodium falciparum , SARS-CoV-2
5.
Turkiye Parazitol Derg ; 46(2): 108-113, 2022 05 23.
Article in English | MEDLINE | ID: covidwho-1863118

ABSTRACT

Objective: To investigate intestinal and blood parasites in people who have a history of traveling abroad during the Coronavirus disease-2019 pandemic and returning to Turkey. Methods: In this study, 104 patients with gastrointestinal system and/or fever complaints who had traveled abroad during the pandemic period and returned to Turkey were included. Parasitic agents were investigated by taking blood and stool samples from the patients. Additionally, urine samples were obtained from patients with hematuria or dysuria with the suspicion of schistosomiasis. A direct microscopic examination, the Crypto-Giardia immunochromatographic test, and ELISA methods were used in the examination of the stool samples. In order to detect Plasmodium species, blood samples were examined by preparing both the rapid diagnostic test and thick drop and thin smear preparations. Results: One or more parasite species were detected in 38 (38.5%) of 104 patients included in the study. While intestinal parasites were detected in 16 (32%) of 50 patients who traveled to Iran and 16 (33.3%) of 48 patients who traveled to Northern Iraq, blood parasites were not found. Schistosoma mansoni was detected in all 5 of the patients with a history of traveling to Sudan. Plasmodium falciparum was detected in 1 patient who traveled to the African continent. Conclusion: It is vital to take precautions to prevent parasitic diseases, such as malaria and schistosomiasis, during travels to African countries. During travels to neighboring countries of Turkey, such as Northern Iraq and Iran, hygiene should be paid attention to, so as to prevent contracting intestinal parasitic diseases. In addition, it was concluded that people who plan to travel abroad should have information about the endemic parasitic diseases of the country that they are going to.


Subject(s)
COVID-19 , Intestinal Diseases, Parasitic , Parasitemia , Parasites , Travel-Related Illness , Animals , Blood/parasitology , COVID-19/epidemiology , Feces/parasitology , Humans , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Pandemics , Parasitemia/epidemiology , Parasitemia/parasitology , Parasites/isolation & purification , Plasmodium/isolation & purification , Turkey/epidemiology , Urine/parasitology
6.
Rev Inst Med Trop Sao Paulo ; 64: e18, 2022.
Article in English | MEDLINE | ID: covidwho-1770829

ABSTRACT

Malaria is the most important vector-borne disease in the world and a challenge for control programs. In Brazil, 99% of cases occur in the Amazon region. In the extra-Amazonian region, a non-endemic area, epidemiological surveillance focuses on imported malaria and on autochthonous outbreaks, including cases with mild symptoms and low parasitemia acquired in the Atlantic Forest biome. In this scenario, cases are likely to be underreported, since submicroscopic parasitemias are not detected by thick blood smear, considered the reference test. Molecular tests are more sensitive, detecting asymptomatic individuals and mixed infections. The aim of this study was to propose a more efficient alternative to detect asymptomatic individuals living in areas of low malaria endemicity, as they are reservoirs of Plasmodium that maintain transmission locally. In total, 955 blood samples from residents of 16 municipalities with autochthonous malaria outbreaks in the Sao Paulo State were analyzed; 371 samples were collected in EDTA tubes and 584 in filter paper. All samples were initially screened by a genus-specific qPCR targeting ssrRNA genes (limit of detection of 1 parasite/µL). Then, positive samples were subjected to a nested PCR targeting ssrRNA and dihydrofolate reductase-thymidylate synthase genes (limit of detection of 10 parasites/µL) to determine Plasmodium species. The results showed a statistically significant difference (K = 0.049; p < 0.0001) between microscopy positivity (6.9%) and qPCR (22.9%) for EDTA-blood samples. Conversely, for samples collected in filter paper, no statistical difference was observed, with 2.6% positivity by thick blood smear and 3.1% for qPCR (K = 0.036; p = 0.7). Samples positive by qPCR were assayed by a species-specific nested PCR that was in turn positive in 26% of samples (16 P. vivax and 4 P. malariae ). The results showed that molecular protocols applied to blood samples from residents in areas with autochthonous transmission of malaria were useful to detect asymptomatic patients who act as a source of transmission. The results showed that the genus-specific qPCR was useful for screening positives, with the subsequent identification of species by nested PCR. Additional improvements, such as standardization of blood plotting on filter paper and a more sensitive protocol for species determination, are essential. The qPCR-based algorithm for screening positives followed by nested PCR will contribute to more efficient control of malaria transmission, offering faster and more sensitive tools to detect asymptomatic Plasmodium reservoirs.


Subject(s)
Malaria, Vivax , Malaria , Plasmodium , Algorithms , Brazil/epidemiology , Ecosystem , Forests , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria, Vivax/diagnosis , Plasmodium/genetics , Plasmodium vivax/genetics , Real-Time Polymerase Chain Reaction
7.
Anal Bioanal Chem ; 414(8): 2607-2618, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1653432

ABSTRACT

The lateral flow assay (LFA) is one of the most popular technologies on the point-of-care diagnostics market due to its low cost and ease of use, with applications ranging from pregnancy to environmental toxins to infectious disease. While the use of these tests is relatively straightforward, significant development time and effort are required to create tests that are both sensitive and specific. Workflows to guide the LFA development process exist but moving from target selection to an LFA that is ready for field testing can be labor intensive, resource heavy, and time consuming. To reduce the cost and the duration of the LFA development process, we introduce a novel development platform centered on the flexibility, speed, and throughput of an automated robotic liquid handling system. The system comprises LFA-specific hardware and software that enable large optimization experiments with discrete and continuous variables such as antibody pair selection or reagent concentration. Initial validation of the platform was demonstrated during development of a malaria LFA but was readily expanded to encompass development of SARS-CoV-2 and Mycobacterium tuberculosis LFAs. The validity of the platform, where optimization experiments are run directly on LFAs rather than in solution, was based on a direct comparison between the robotic system and a more traditional ELISA-like method. By minimizing hands-on time, maximizing experiment size, and enabling improved reproducibility, the robotic system improved the quality and quantity of LFA assay development efforts.


Subject(s)
COVID-19/diagnosis , Immunoassay/instrumentation , Malaria/diagnosis , Point-of-Care Testing , Tuberculosis/diagnosis , COVID-19 Serological Testing/economics , COVID-19 Serological Testing/instrumentation , Equipment Design , Humans , Immunoassay/economics , Mycobacterium tuberculosis/isolation & purification , Plasmodium/isolation & purification , Point-of-Care Testing/economics , Reproducibility of Results , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Time Factors
8.
Acta Parasitol ; 67(1): 55-60, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1525614

ABSTRACT

Plasmodium resistance to antimalarial drugs is an obstacle to the elimination of malaria in endemic areas. This situation is particularly dramatic for Africa, which accounts for nearly 92% of malaria cases worldwide. Drug pressure has been identified as a key factor in the emergence of antimalarial drug resistance. Indeed, this pressure is favoured by several factors, including the use of counterfeit forms of antimalarials, inadequate prescription controls, poor adherence to treatment regimens, dosing errors, and the increasing use of other forms of unapproved antimalarials. This resistance has led to the replacement of chloroquine (CQ) by artemisinin-based combination therapies (ACTs) which are likely to become ineffective in the coming years due to the uncontrolled use of Artemisia annua in the sub-Saharan African region for malaria prevention and COVID-19. The use of Artemisia annua for the prevention of malaria and COVID-19 could be an important factor in the emergence of resistance to Artemisinin-based combination therapies.


Subject(s)
Antimalarials , Artemisia annua , Artemisinins , COVID-19 , Malaria, Falciparum , Malaria , Plasmodium , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , COVID-19/prevention & control , Humans , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Plasmodium falciparum
10.
J Midwifery Womens Health ; 66(3): 343-350, 2021 May.
Article in English | MEDLINE | ID: covidwho-1325030

ABSTRACT

Malaria is a common infection world-wide, which carries significant risk of morbidity and mortality. Health care providers in the United States may lack experience in recognizing and treating this disease. The pathophysiology of malaria differs during pregnancy, resulting in increased risk for serious morbidity and mortality for the woman and her fetus. Screening for risk factors, especially immigration from and travel to endemic countries, is critical. Symptoms of malaria can mimic influenza-type illnesses, causing delay in diagnosis. Consultation with an infectious disease specialist and hospitalization may be required for appropriate testing and treatment. Chemoprophylaxis and counseling regarding methods to reduce risk are important components of prevention. The US Centers for Disease Control and Prevention and the World Health Organization have established protocols for treatment and are helpful resources for clinicians. A team approach to care based on the woman's stage of illness and recovery, can involve midwives, physicians, specialists and others.


Subject(s)
Antimalarials , Malaria , Plasmodium , Antimalarials/therapeutic use , Female , Health Personnel , Humans , Malaria/diagnosis , Malaria/drug therapy , Malaria/prevention & control , Population Surveillance , Pregnancy , Severity of Illness Index , United States
11.
Immunobiology ; 226(5): 152091, 2021 09.
Article in English | MEDLINE | ID: covidwho-1307004

ABSTRACT

The spike protein of coronavirus is key target for drug development and other pharmacological interventions. In current study, we performed an integrative approach to predict antigenic sites in SARS-CoV-2 spike receptor binding domain and found nine potential antigenic sites. The predicted antigenic sites were then assessed for possible molecular similarity with other known antigens in different organisms. Out of nine sites, seven sites showed molecular similarity with 54 antigenic determinants found in twelve pathogenic bacterial species (Mycobacterium tuberculosis, Mycobacterium leprae, Bacillus anthracis, Borrelia burgdorferi, Clostridium perfringens, Clostridium tetani, Helicobacter Pylori, Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Vibrio cholera and Yersinia pestis), two malarial parasites (Plasmodium falciparum and Plasmodium knowlesi) and influenza virus A. Most of the bacterial antigens that displayed molecular similarity with antigenic sites in SARS-CoV-2 RBD (receptor binding domain) were toxins and virulent factors. Antigens from Mycobacterium that showed similarity were mainly involved in modulating host cell immune response and ensuring persistence and survival of pathogen in host cells. Presence of a large number of antigenic determinants, similar to those in highly pathogenic microorganisms, not merely accounts for complex etiology of the disease but also provides an explanation for observed pathophysiological complications, such as deregulated immune response, unleashed or dysregulated cytokine secretion (cytokine storm), multiple organ failure etc., that are more evident in aged and immune-compromised patients. Over-representation of antigenic determinants from Plasmodium and Mycobacterium in all antigenic sites suggests that anti-malarial and anti-TB drugs can prove to be clinical beneficial for COVID-19 treatment. Besides this, anti-leprosy, anti-lyme, anti-plague, anti-anthrax drugs/vaccine etc. are also expected to be beneficial in COVID-19 treatment. Moreover, individuals previously immunized/vaccinated or had previous history of malaria, tuberculosis or other disease caused by fifteen microorganisms are expected to display a considerable degree of resistance against SARS-CoV-2 infection. Out of the seven antigenic sites predicted in SARS-CoV-2, a part of two antigenic sites were also predicted as potent T-cell epitopes (KVGGNYNYL444-452 and SVLYNSASF366-374) against MHC class I and three (KRISNCVADYSVLYN356-370, DLCFTNVYADSFVI389-402, and YRVVVLSFELLHA508-520) against MHC class II. All epitopes possessed significantly lower predicted IC50 value which is a prerequisite for a preferred vaccine candidate for COVID-19.


Subject(s)
Antigens, Viral/immunology , Epitopes, T-Lymphocyte/immunology , Peptides/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Bacteria/immunology , Binding Sites , COVID-19/prevention & control , COVID-19 Vaccines , Influenza A virus/immunology , Plasmodium/immunology , Protein Domains
12.
Molecules ; 25(21)2020 Nov 07.
Article in English | MEDLINE | ID: covidwho-1305742

ABSTRACT

Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.


Subject(s)
Antimalarials/pharmacology , Drug Discovery/trends , Malaria/drug therapy , Plasmodium/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Calcium/metabolism , Casein Kinase I/metabolism , Culicidae , Drug Design , Drug Resistance , Glycogen Synthase Kinase 3/metabolism , Humans , Imidazoles/pharmacology , Inhibitory Concentration 50 , Life Cycle Stages/drug effects , MAP Kinase Signaling System , Phosphotransferases/chemistry , Plasmodium/enzymology , Pyridines/pharmacology
13.
J Trop Pediatr ; 67(1)2021 01 29.
Article in English | MEDLINE | ID: covidwho-998469

ABSTRACT

Based on reports of parasite resistance and on World Health Organization recommendation, chloroquine was replaced with the artemisinin-based combination therapies (ACTs) as the first choice of drugs for the treatment of uncomplicated malaria. Disuse of chloroquine led to restoration of drug-sensitive parasite to some extent in certain countries. Ever since chloroquine and hydroxychloroquine were touted as potential treatment for coronavirus disease 2019 (COVID-19), there has been a dramatic surge in demand for the drugs. Even in areas where chloroquine is proscribed, there has been an unexpected increase in demand and supply of the drug. This situation is quite worrying as the indiscriminate use of chloroquine may produce drug-resistant parasites which may impact negatively on the efficacy of amodiaquine due to cross-resistance. Amodiaquine is a partner drug in one of the ACTs and in some of the drugs used for intermittent preventive treatment. We herein discuss the consequences of the escalated use of chloroquine in the management of COVID-19 on chemotherapy or chemoprevention of malaria and offer an advice. We speculate that parasite strains resistant to chloroquine will escalate due to the increased and indiscriminate use of the drug and consequently lead to cross-resistance with amodiaquine which is present in some drug schemes aforementioned. Under the circumstance, the anticipated hope of reverting to the use of the 'resurrected chloroquine' to manage malaria in future is likely to diminish. The use of chloroquine and its derivatives for the management of COVID-19 should be controlled.


Subject(s)
COVID-19 Drug Treatment , Chloroquine/therapeutic use , Drug Resistance , Malaria , Plasmodium/drug effects , Amodiaquine/therapeutic use , Humans , Malaria/drug therapy
14.
Cytometry A ; 97(9): 872-881, 2020 09.
Article in English | MEDLINE | ID: covidwho-656632

ABSTRACT

Malaria is a threat to human mankind and kills about half a million people every year. On the other hand, COVID-19 resulted in several hundred thousand deaths since December 2019 and remains without an efficient and safe treatment. The antimalarials chloroquine (CQ) and its analog, hydroxychloroquine (HCQ), have been tested for COVID-19 treatment, and several conflicting evidence has been obtained. Therefore, the aim of this review was to summarize the evidence regarding action mechanisms of these compounds against Plasmodium and SARS-CoV-2 infection, together with cytometry applications. CQ and HCQ act on the renin angiotensin system, with possible implications on the cardiorespiratory system. In this context, flow and image cytometry emerge as powerful technologies to investigate the mechanism of therapeutic candidates, as well as for the identification of the immune response and prognostics of disease severity. Data from the large randomized trials support the conclusion that CQ and HCQ do not provide any clinical improvements in disease severity and progression of SARS-CoV-2 patients, as well as they do not present any solid evidence of increased serious side effects. These drugs are safe and effective antimalarials agents, but in SARS-CoV-2 patients, they need further studies in the context of clinical trials. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Antimalarials/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Malaria/drug therapy , Plasmodium/drug effects , Pneumonia, Viral/drug therapy , Animals , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Chloroquine/adverse effects , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/virology , Flow Cytometry , Host Microbial Interactions , Host-Parasite Interactions , Humans , Malaria/diagnosis , Malaria/immunology , Malaria/parasitology , Pandemics , Plasmodium/immunology , Plasmodium/pathogenicity , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL